Spartan Networks: Self-feature-squeezing neural networks for increased robustness in adversarial settings
نویسندگان
چکیده
منابع مشابه
Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks
Although deep neural networks (DNNs) have achieved great success in many tasks, they can often be fooled by adversarial examples that are generated by adding small but purposeful distortions to natural examples. Previous studies to defend against adversarial examples mostly focused on refining the DNN models, but have either shown limited success or required expensive computation. We propose a ...
متن کاملTowards Proving the Adversarial Robustness of Deep Neural Networks
Autonomous vehicles are highly complex systems, required to function reliably in a wide variety of situations. Manually crafting software controllers for these vehicles is difficult, but there has been some success in using deep neural networks generated using machine-learning. However, deep neural networks are opaque to human engineers, rendering their correctness very difficult to prove manua...
متن کاملDomain-Adversarial Neural Networks
We introduce a new representation learning algorithm suited to the context of domain adaptation, in which data at training and test time come from similar but different distributions. Our algorithm is directly inspired by theory on domain adaptation suggesting that, for effective domain transfer to be achieved, predictions must be made based on a data representation that cannot discriminate bet...
متن کاملSelf-organizing Neural Networks in Feature Extraction
Due to large datavolumes when remote sensing or other kind of images are used, there is need for methods to decrease the volume of data. Methods for decreasing the feature dimension, in other words number of channels, are called feature selection and feature extraction. In the feature selection, important channels are selected using some search technique and these channels are used for current ...
متن کاملParseval Networks: Improving Robustness to Adversarial Examples
We introduce Parseval networks, a form of deep neural networks in which the Lipschitz constant of linear, convolutional and aggregation layers is constrained to be smaller than 1. Parseval networks are empirically and theoretically motivated by an analysis of the robustness of the predictions made by deep neural networks when their input is subject to an adversarial perturbation. The most impor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Security
سال: 2020
ISSN: 0167-4048
DOI: 10.1016/j.cose.2019.05.014